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SUMMARY 
Newton's method is applied t o  the finite volume approximation for the steady state heat transfer, fluid 
flow and unknown interfaces in a floating molten zone. The streamfunction/vorticity and temperature 
formulation of the Navier-Stokes and energy equations and their associated boundary conditions are 
written in generalized curvilinear co-ordinates and conservative law form with the Boussinesq approxima- 
tion. During Newton iteration the ILU(0) preconditioned GMRES matrix solver is applied for solving the 
linear system, where the sparse Jacobian matrix is estimated by finite differences. Nearly quadratic 
convergence of the method is observed. Sample calculations are reported for sodium nitrate, a high-Prandtl- 
number material (Pr = 9.12). Both natural convection and thermocapillary flow as well as an overall mass 
balance constraint in the molten zone are considered. The effects of convection and heat input on the flow 
patterns, zone position and interface shapes are illustrated. After the lens effect due to the molten zone is 
considered, the calculated flow patterns and interface shapes are compared with the observed ones and 
are found t o  be in good agreement. 
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1. INTRODUCTION 

The modelling of a floating molten zone is complicated by the strong coupling of mixed natural 
convection and thermocapillary flow, unknown melt/solid interfaces, an unknown ambient/melt 
free surface and a constraint of overall mass balance. Numerous computational studies have 
been carried out to investigate the convection in a melt (or fluid) column between two heated 
discs, either without free surface deformation'-6 or with free surface def~rmation.'-~ The 
melt/solid interfaces of all the cases are flat and fixed. The models include either a half-zone 
configuration (where the temperature of one disc is higher than that of the other) or a full-zone 
configuration (in which the temperature of both discs is kept the same). The full-zone configura- 
tion is similar to the so-called floating zone (FZ) crystal growth process, which is one of the 
most important processes for purifying or growing high-purity crystals. Recently Duranceau 
and Brown" modelled an FZ crystal growth system using a finite element method (FEM) and 
computed both melt/solid and melt/air interfaces together with the interacting thermocapillary 
and natural convections. Lan and Kou" also solved the same problem by a body-fitted 
co-ordinate finite difference method in which the interface shapes were calculated through an 
outer loop of Gauss-Siedel iteration. The effects of rotation and solute segregation were also 
investigated by them recently.''-l4 There is a major difference between the modelling of FZ 
crystal growth and that of a floating molten zone. In practice, to ensure FZ crystal growth at 
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a constant diameter, a growth angle constraint is imposed at the melt/air/crystal triple junction.’ 
However, for a floating molten zone the zone is formed by zone melting a solid rod so 
that the mass of the total sample is constant. The modelling of a floating molten zone considering 
both melt/solid and melt/ambient (or air) interfaces has not been studied so far; in fact, no 
attention has been paid to studying this system. However, since forming a floating molten zone 
is the starting step in FZ crystal growth, a stationary molten zone has its own physical 
significance. In addition, the capillary phenomena and zone stability of a stationary zone with 
the volume or mass specified could be quite different from those with the contact angle 
specified. ’ 

From the numerical algorithm point of view the numerical methods used in all the 
above studies, except the FEM approach, were decoupled iteration approaches. In other 
words, field variables and free surfaces or interfaces were iterated separately. Although 
these approaches have proven to be versatile and useful for the class of problems 
considered,’ l-I4 the decoupled successive approximations can take many iterations to converge, 
particularly when extreme underrelaxation is required to ensure stability. Very often a con- 
vergence error may be introduced owing to an early termination of the iterations. Further, 
for problems where limit points, multiple solutions (bifurcation) and instabilities to other 
solution branches are expected, decoupled successive iterations are not optimal. An alter- 
native to the decoupled approaches of the previous studies is global iteration, in which 
one could simultaneously iterate on all unknown variables, including the field variables 
and the unknown interface shapes. Successful implementations of Newton’s method in the 
FEM formulation, a global approach, for free boundary problems has already been re- 
p~rted’~*’’*’* and this in fact is seen as a further advantage of the FEM. In the FEM/Newton 
approach the linear equations were solved by a frontal direct matrix solver.” However, for the 
finite difference or finite volume formulation of free boundary problems Newton’s method was 
not used until recently. Dandy and Leal” used Newton’s method scheme to solve the shape of 
a gas bubble in a fluid and the flow patterns around it. Quadratic convergence was also observed 
in their computation. Both direct and iterative matrix solvers were used to solve the linear 
Newton equations. The Harwell MA32 frontal matrix solver” was particularly recommended. 
However, owing to the large frontal width caused by the use of natural ordering of variables 
and elliptic-PDE-generated body-fitted co-ordinates, a large memory space was used in their 
study. In addition, the computational efficiency of the frontal method was limited by the 1/0 
speed. 

In all previous reports the Jacobian matrices used in Newton’s method were calculated 
analytically. Forming a Jacobian matrix analytically is usually extremely tedious and error- 
prone for free boundary problems, even with the help of symbolic manipulation software. 
In practice, a small error in the Jacobian matrix can normally deteriorate the quadratic 
convergence of Newton’s method. This therefore makes Newton’s method much less attractive 
for the numerical solution of free boundary problems. Furthermore, in many applications 
an analytical Jacobian may not be available. Therefore a numerical method (e.g. finite differences) 
to estimate the Jacobian may provide an easier and more versatile approach in the implementa- 
tion of Newton’s method. Automatic differentiation22 is another option. In the present paper 
a global Newton scheme, using a numerical Jacobian instead of an analytical one, is applied 
to the body-fitted co-ordinate finite volume method (BFCFVM) for solving the floating 
molten zone problem. Heat transfer, fluid flow and the unknown free surface and interfaces 
are computed simultaneously and the Newton’s method scheme still approaches quadratic 
convergence. 
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Figure 1. Formation of a floating molten zone from a solid rod: (a) a solid rod before melting; (b) a stationary floating 
molten zone formed after melting 

Figure 2. A 2 mm radius NaNO, floating molten mne in vacuum.z3 The flow patterns were visualized by a 10 mW 
He-Ne laser. Flow directions are indicated by arrows 

2. FORMULATION 

2.1. Governing equations 

The floating molten zone modelled is illustrated in Figure 1. Figure l(a) shows the rod 
material before the heater is switched on. After the heater is turned on for a period of time, a 
steady state molten zone is obtained as depicted in Figure l(b). Owing to the effect of gravity, 
the lower part of the molten zone bulges outwards while the upper part necks inwards. For 
example, Figure 2 shows the floating molten zone of a 4 mm diameter NaNO, rod formed by 
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Figure 3. Schematic sketch of a floating molten zone under normal gravity 

a platinum heating wire in vacuum.23 The flow patterns in the melt zone were also visualized 
by a 10 mW He-Ne laser. As shown, the molten zone not only has a deformed melt/ambient 
free surface but also highly convex melt/solid interfaces. The directions of flow loops are indicated 
by the arrows. The flow patterns and their effects on interfaces will be discussed later. Since the 
modelling of this specific system will be focused on in this paper, the equations described later 
will be written in dimensional rather than dimensionless forms. 

If the heating is axisymmetric, the computational domain for the upper rod, the melt and the 
lower rod can be taken as shown in Figure 3. Therefore this can be treated as a two-dimensional 
model. The domain consists of the upper solid rod being held from above, the melt being held 
by surface tension and the lower solid rod being held from below. Each of these regions is 
characterized by a set of physical properties. The flow and temperature fields as well as the 
shapes of the upper solid/melt, lower melt/solid and melt/ambient interfaces are represented in 
the cylindrical co-ordinate system ( r ,  2). 

The total rod length in experiments is usually many times the radius. In order to reduce the 
computational load, though at the same time compromising the accuracy, the system is divided 
into three regions. As illustrated in Figure 3, these are an outer region in the upper rod, an 
outer region in the lower one and an inner region that consists of the melt zone and the solid 
material near the solid/melt interfaces. The inner region is made long enough so that the 
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two-dimensional temperature distribution in this region becomes essentially one-dimensional 
(i.e. uniform in the radial direction) near its two ends. As such, heat transfer in the two outer 
regions can be treated as one-dimensional. The same strategy has been applied successfully in 
the numerical simulation of FZ crystal growth.".' I 

Owing to the unknown boundary shapes, the co-ordinates (r, z) are transformed into general 
(non-orthogonal) curvilinear co-ordinates (q,  <) which fit all the interfaces as shown in Figure 
4. An algebraic boundary-fitted co-ordinate transformation is used as follows. 

Lower rod 

where [ = 0-511 + tanh{h[(q - l)/(N, - 1) - 0.5]}/tanh(0.5b)]. 
Melt 

r = RmC/[A + (1  - A)O,  

z = h, + ( h ,  - h,)& 

where 4 = 0.511 + tanh{h,[(t - (a)/(<b - t,) - 0.5]}/tanh(0.56,)]. 
Upper rod 

(3) 

(4) 

r = R , I / [ A  + (1 - A)L'I, 

z = h" + ( L  - ~I")(@J-'~) - l)/(BU('C-Sb) - l), 

( 5 )  

(6) 

where A, 6, h,, B L  and B ,  are the stretch constants to control the grid distributions. The 
melt/ambient free surface shape R,(<) and the melt/solid interfaces h,(q) and hL(tf) are unknown 
CI priori and need to be calculated simultaneously with the field variables. 

The equations for steady, axisymmetric flows in non-orthogonal co-ordinates using the 
streamfunction + and vorticity w may be written in a conservative law form as 

where 

The coefficients a, b, c and d in equation (7)  are given in Table I for 4 = +, w and Trespectively. 
In Table I pL is the melt density, C, is the specific heat, p is the viscosity, /3 is the thermal 
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Figure 4. The non-orthogonal body-fitted co-ordinate system used for computation: (a) physical domain; (b) computa- 
tional domain. The heavy lines are the interfaces in the computational domain 

Table I. Coefficients a, b, c and d in equation (7) 

4 a b C d 

expansion coefficient, k is the thermal conductivity and g is the gravitational acceleration. The 
streamfunction + is defined by 

1 w 
P L I  8.2 ' PLI dr 

v = - -  u =  1 a* 

and the vorticity by 

aU av 
a2 ar '  

o--- 

where u is the radial velocity and u is the axial velocity. Equation (7) can be used in both the 
melt phase and the solid phase; only the energy equation (4 = T) is needed in the solid phase. 
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2.2. Boundary conditions 

The thermal boundary conditions in the general co-ordinates (q, <) are as follows. 
(1) Along the centreline of the system ( q  = l), owing to symmetry, 

9 2 2 7 ;  - 9 1 2 q  = 0. 
(2) At the melt/solid interfaces (t = ta, tb) the interfacial energy balance is 

k 

and the temperature is set to an equilibrium melting temperature 

T = T,, (10) 

where subscripts S and M denote solid phase and melt phase respectively and T, is the melting 
temperature. 

(3) At the surface of the solid and melt (q  = NJ, heat transfer from the system to the ambient 
is by both radiation and convection according to the energy balance along the surface, 

9 2 2 7 ; - 9  T 
J S Z 2  

l 2  ‘ = h(T - T,) + &a(T4 - Tt) ,  -k 

where k = k, in the solid and k = kM in the melt; h is the heat transfer coefficient and is set to 
zero in vacuum, while E is the thermal emissivity and a is the Stefan-Boltzmann constant. T,(z) 
is an effective ambient temperature distribution specified along the surface. A Gaussian 
distribution for T,(z) as shown in Figure 3 is 

Energy flux continuity is used at the junctions of the one- and two-dimensional regions (z = 0 
and z = L), while an adiabatic condition is employed at the other ends of the one-dimensional 
regions. The length of the one-dimensional region is about 200 times the rod radius. The 
implementation of this boundary condition has been described elsewhere.24 

The fluid flow boundary conditions are as follows. 

(1) Along the centreline of the system ( q  = 1) 

* = 0, (12) 

w = 0. (13) 

* = 0, (14) 

(2) At the melt/solid interfaces (< = t., tb) 

Equation (15) can be derived from the no-slip boundary condition at the solid boundaries, where 
u = u = 0. The streamfunction $ is set to zero on the boundaries as a reference. 

(3) On the free surface of the melt (q = N,) * = 0, (16) 
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aY ns: t = --- (s . V T ) ,  
dT 

nn: t = y - + - - ~  + Pa, (1' b,) 
where n and s are the unit normal vector and unit tangent vector at the free surface respectively, 
t is the total stress tensor, y is the surface tension coefficient of the melt, dy/aT is the surface 
tension temperature coefficient of the melt and R, and R 2  are the radii of curvature. Pa is a 
relative reference pressure and is set to satisfy the overall mass balance constraint (which will 
be described shortly). Along the free surface $ is zero and a$/at = 0. From this it can be shown 
that n . (ue, + oe,) = 0. This equation is the so-called kinematic condition. 

The tangential stress balance, equation (18), after some manipulation, can be reduced to 

Similarly, manipulation of the normal stress balance, equation (19), yields the form 

where S is the total normal stress including the relative pressure difference Pa, the static pressure 
due to gravity and the dynamic pressure due to fluid flow.' ' 

Finally, the overall mass for the sample rod is constant before and after melting, so that this 
constraint can be conceptually associated with the integration constant, i.e. the relative pressure 
difference Pa. In fact, in the global iteration scheme described here, Pa is simply treated as one 
of the unknowns, which is to be determined simultaneously with all other unknowns. The integral 
equation imposed is 

P s n W  - CPS(I/,U + 4J + P L  VMI = 09 (22) 

where V,, and V,, are the volumes of the upper and lower solid rods respectively, ps is the solid 
density and VM is the melt volume. The volume of the lower solid rod can be calculated as 

and that of the upper one as 

while the volume of the molten zone is 

It is interesting to point out that the above volume integrals can be evaluated by simple line 
integrations along the boundaries after co-ordinate transformation; each double integral can be 
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decomposed into two line integrals. This is another advantage of using algebraically generated 
body-fitted co-ordinates. 

3. FINITE VOLUME DISCRETIZATION 

3.1. Finite volume integration 

Equation (7) is discretized by employing the finite volume method. The physical domain (r,  z) 
is subdivided into a finite number of control volumes (CVs) of volume Vbounded by cell faces, 
which are located about halfway between consecutive nodal points (see Figure 5) .  The choice 
of control volume is quite arbitrary, depending on how the fluxes across cell faces are calculated; 
different interpolation schemes lead to different 'exact' locations of the cell faces. The physical 
domain (r, z)  can be transformed into the computational domain (9, <) according to equations 
(1x6). The transformed domain has a CV of volume V', as shown in Figure 5(b), and 
rdV = rJdV'. Since Aq = A t  = 1 is used here, V' = 1. Also, the cell faces in the domain (q, 5 )  
are located halfway between nodal points; all variables are stored at the nodal points. For 
integrating the governing differential equation over the finite control volumes, the Gauss theorem 
is used. With this the volume integrals of the terms in equation (7) may be converted to surface 
integrals (fluxes) over the faces of the control volume. The resulting balance equation for each 
control volume can be expressed as 

le - I, + I, - I ,  + (dJ) dq d< = 0, 1. 
where I,, for example, represents the total flux of 6 across the face 'e'. Each of the surface 
fluxes I,, I,, etc. is made up of two distinct parts, namely a convective contribution 1' and a 
diffusive contribution ID. Equation (26) represents the finite volume equation of the differential 

(a) 01 
Figure 5. Nodal points and finite volume in (a) the physical domain and (b) the computational domain 
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equation governing Q. The numerical evaluation of the various terms in equation (26) requires 
the calculation of geometrical factors for control volumes and a discretization scheme for 
interpolating quantities at the cell faces from their nodal values. 

The above treatment is similar to that of Lan and Kou.” The major difference is that a 
conservative law (divergence) form of the governing equation (7) is used here instead of a 
non-conservative one. Mathematically these two formulations are exactly the same and can be 
transformed into each other simply by the chain rule, but numerically they are not. By the 
present approach the flux balance within the finite volume is conservative. In other words, 
equation (26) guarantees that the internal fluxes will be cancelled when it is summed over all 
the control volumes. On the other hand, in the non-conservative formulation fictitious sources 
due to the finite difference approximation may be introduced during the summation procedure. 
Hence, a better conservation of field properties is expected using the conservative form. 

3.2. Evaluation of convection, diflision and source terms 

Linear interpolation is used to calculate the values of Q and the co-ordinate values (r, z )  at 
the cell faces for evaluating the diffusive flux ID. Values at the corners of the control volume are 
obtained by taking average values over their nearby nodal points. For the convective fluxes I‘ 
at the cell faces an upwind schemez6 is adopted. Accordingly the expression for the convective 
flux of Q through the cell face ‘e’, for example, can be written as 

1: = (a4)AJl.c - J l S A  (27) 

where 

aQc = 0.5(a$)PC($ne - $sc) - I $ne - $sc I1 + 0.5(aJl)~C($ne - $sc) + I $nc - $sc I 1 9  (28) 

the diffusive flux as 

and the source term as 
n 

The reasons for using the first-order upwind scheme to approximate the convective terms are 
firstly to ensure the diagonal dominance of the Jacobian matrix for numerical stability and 
secondly to reduce the coding effort. The central difference scheme, even though it has a higher 
order of accuracy, could lead to slow convergence or instability during linear equation iterations. 
Second-order upwind schemes not only require more coding effort but also lead to a larger 
bandwidth in the Jacobian matrix. 

3.3. Boundary conditions 

Apparently the control volumes on the boundaries are all half-cells. With the $/co 
formulation, integrating the governing equations over the half-cells with the import of the 
boundary conditions requires more coding effort for free boundary problems. Instead, second- 
order finite difference approximations of the boundary conditions are used directly here; the 
one-side difference is employed in the normal direction and the central difference is employed 



NEWTONS METHOD APPLIED TO A FLOATING MOLTEN ZONE 51 

in the other direction. It has been noted that an inconsistent treatment of the finite volume 
method on the boundaries may affect the ac~uracy.~' However, through a series of mesh 
refinements it was found that the hybrid approach gave satisfactory results even for the coarsest 
mesh used in the study. 

Simpson's rule is used for volume integration, i.e. equations (23)-(25), while the trapezoidal 
rule is used for integration of the pressure along the free surface. The reason for using the two 
different schemes is that although Simpson's rule has a higher accuracy than the trapezoidal 
rule, it requires that the number of points in the integration be odd for volume integration, but 
for integrating the pressure over the free surface (from t. to tb )  the number of points alternates 
between odd and even as the integration proceeds. Because of this, N,, (., (b - 5, + 1 and 
(, - tb + 1 are all odd numbers. The normal stress balance at the free surface, equation (21), is 
approximated by second-order differences as well. 

3.4. Algebraic equations 

Equation (26) and the discretization of the boundary conditions yield t , N ,  algebraic 
equations for T(in the two-dimensional domain), (&, - <, - lXN, - 2) equations for 1(1 and 
( t b  - (, + 1)N, equations for o. Discretization of the interface boundary conditions yields 2N, 
equations for h, and hL and &, - t, + 1 algebraic equations for R,. In addition, there are one 
equation for the relative pressure difference P ,  and an additional 60 equations for the temperature 
in the one-dimensional regions. In total there are therefore [,N, + (&, - r,  - 1)(N, - 2) + 
(tb - t. + 1)N, + 2N, + ( t b  - t, + 1) + 1 + 60 equations and unknowns. For example, in the 
case of 31 x 81 grid points in the domain (N, = 31 and t, = 81) there are 5077 equations and 
unknowns. 

4. SOLUTION SCHEME 

4.1. Newton's method 

The system of non-linear algebraic equations generated in the previous section can be 
written symbolically as 

f(x) f(T $3 W, R m ,  h", hL9 Pa) = 0. (3 1) 

This non-linear equation set is solved by Newton's method simultaneously for all variables. 
Starting from an initial approximation xo to the vector of unknowns, successive updates are 
constructed as 

(32) 

J6"+1 = - f(x"). (33) 

x n +  1 = xn + gn+ 1, 

where the correction vector 6"+l is the solution of the linear equation set 

The components of the Jacobian matrix 3, formed by explicit differentiations as Jij = dfJdx,, 
represent the sensitivity of the residual vector to changes in the solution vector. 

4.2. Jacobian matrix 

To achieve a tight band structure in the Jacobian matrix, the equations and unknowns are 
ordered, starting at '1, t = 1 for each t, in order of appearance. In the lower solid rod N, 
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equations are written for T for each (. In the melt, starting at 4 = (,, N ,  equations are written 
for T, $ and o; there are three degrees of freedom per nodal point. In the upper solid rod, 
starting at ( = rb + 1, the ordering is similar to that in the lower rod. After the governing 
equation (26) and the associated boundary conditions have been written, the boundary condi- 
tions are included in the following order: the lower solid/melt interface energy balance, the upper 
melt/solid interface energy balance, the normal stress balance and finally the overall mass 
balance. Because the relative pressure difference Pa does not appear explicitly in the overall mass 
balance equation, the last diagonal element of the Jacobian matrix is zero. The sparse structure 
arising from this ordering is shown in Figure 6; the sparsity is only about 0.6%. The vertical 
band on the right shows the dependence of the field variables on the interfaces. For high-Prandtl- 
number materials the interface shapes are strongly affected by T, $ and w. The omission of 
some elements in this vertical band will cause slow convergence or divergence during Newton 
iteration. In fact, the ‘arrow-shaped’ structure, similar to that from the FEM approxima- 
t i ~ n , ” . ’ ~  is typical in free boundary or interface problems. 

A Jacobian matrix with a known sparse pattern could be estimated either analytically or 
numerically. Getting an analytical Jacobian for a large and complicated problem is usually 
difficult and error-prone, even with the help of symbolic differentiation, especially as the 
complexity increases. The finite difference approach proves to be an eflicient way to compute 
the derivatives and has the advantage that one needs only the residual function f(x) as a ‘black 
box’. For a residual vector f(x) with dimension NEQ (the total number of equations) the 
simplest way to approximate is to use forward differences 

where ej is column j of the identity matrix and hi is a suitable step length. A straightforward 
implementation of equation (34) requires computing f(x + hjej) for each j, i.e. NEQ evaluations 

.,. . -.L _.___ 

Figure 6. Sparse structure of the Jacobian matrix 
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of f  at displacements from x. However, because of the sparsity, eachf, depends only on a few 
xj. Therefore one can use this fact to reduce the number of function evaluations. 

For a sparse matrix with any pattern Curtis et aLZ8 proposed a heuristic, the so-called CPR 
algorithm, to group columns of 3 such that no two have entries in the same row. A set of such 
columns of can be computed simultaneously with a single residual function evaluation. To 
further improve the algorithm, Coleman et al.29 proposed an a priori permutation of columns 
to alter the order in which they are examined or to apply the algorithm to jT rather than 3. 
Sometimes such an approach reduces the number of groups slightly. Software for their new 
algorithm, although the improvement to the CPR algorithm is minor, is adopted here to estimate 
the Jacobian matrix with the least possible number of function evaluations. The number of 
function evaluations is about 104 for NEQ = 5077 and about 40 if the overall mass balance 
constraint (the last equation) is excluded. In fact, the Jacobian elements for the mass integral 
equation could be easily evaluated analytically and this reduces by more than half the 
computational effort on the residual function. It should be pointed out that the minimum number 
of function evaluations is equal to the number of equations if there exists any row that is 

After the groups of columns are found, equation (34) is then used to compute the elements of 
j. However, a small step size (hi) is needed to properly approximate derivatives, yet it may lead 
to numerical cancellation and the loss of many digits of accuracy. In addition, different scales 
of xi may require different step sizes for the various independent variables. The step size for xi 
is estimated by 

hj  = ,/t max(Ixjl, RTOLjIxjI + ATOL,.), (35) 

where R m L ,  and A70Lj  are the relative and absolute error tolerances specified respectively and 
6 is the unit round-off error of the computer. For most variables R713L and A7DL are of the 
order of 1 x except for the vorticity. For the vorticity a larger A l U L  is needed to ensure 
stability. In most cases ATOL z 1 is adequate for the vorticity; a larger value may be helpful 
for cases with stronger convection. Too large a value of hj  could slow down the convergence 
speed as well. 

4.3. Solution of linear equations 

Solving the linear equation (33) requires a sparse matrix package that efficiently stores the 
elements of the Jacobian and also provides a fast and accurate solution. A direct matrix solver, 
i.e. Harwell MA28,3’ and two iterative matrix solvers, i.e. GMRES3’ and CGS3’ with incomplete 
LU factorization without fill-in, ILU(O), are examined. Among these, CGS fails to converge and 
MA28 costs too much memory and computation time. For MA28 especially a threshold value 
of at least 0.1 for partial pivoting is required to ensure stability, which leads to too many fill-in 
elements and too much CPU time in the analysis phase (where the sparse pattern is analysed 
to find an ordering that preserves sparsity) during LU factorization. Only GMRES performed 
well in this study from the consideration of CPU time, memory and robustness. 

GMRES is a technique introduced by Saad and S ~ h u l t z ’ ~  for solving a large sparse 
non-symmetric linear system of equations by minimizing the 2-norm (Euclidean norm) of the 
residual vector - f  - k over 6 in the Krylov subspace 

K, = Span{ro, h,, . .., Jm-’ro}, 

where ro is the initial residual vector -f - 36, and m is the dimension of the Krylov space. 
Preconditioning plays a very important role in the application of an iterative matrix solver. The 
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idea of preconditioning is simply to transform the original linear equation set, e.g. by multiplying 
it through by a certain matrix P-', into one that can be easier to solve by a Krylov subspace 
method. For example, when the preconditioner P is applied to the right of the matrix, one will 
be solving, instead of equation (33), the preconditioned linear system 

(JP-'KP&) = -f. (37) 

The incomplete LU decomposition without fill-in, ILU(0),34 is one of the simplest and most 
popular preconditioners. The principle is to find a pair of matrices L and U, where L is a unit 
lower triangular and U an upper triangular matrix, such that L + U has the same structure as 
the original matrix and ( t U ) i j  = Jij for each pair ( i ,  j )  that belongs to the non-zero structure of 
J. The most common way to obtain ILU(0) is to perform standard Gaussian elimination and 
during the process replace any fill-in by zero. Clearly the zeros that are introduced need not be 
stored. Since ILU(0) does not perform pivoting during factorization, it may fail owing to the 
zero diagonal elements in the Jacobian matrix. Therefore a proper ordering of the variables is 
crucial to the success of iterative matrix solvers. Furthermore, increasing the dimension rn of K, 
could reduce the number of iterations to convergence, but the memory space required is increased 
as well. A value of rn = 75 is used in the calculations. In such a case GMRES takes about 80 
iterations to converge with a 2-norm of 

4.4. Verification of numerical scheme 

The numerical solutions can be affected by three kinds of errors:3s (1) algorithmic and 
coding errors, (2) convergence error (error due to the difference between the exact solution and 
the approximate solution of the discretized equations left over after stopping the iterations) and 
(3) discretization error (due to the difference between exact and numerical solutions). In order 
to examine the first type of error, the results of the present code are compared with those from 
a finite element code developed by Hyer et a1.' as well as with the velocity distribution 
measurements by Preisser et al.36 for the half-zone configuration and are found to be in good 
agreement. A detailed discussion of the comparison is given el~ewhere.~ The second type of error 
is the most common one in free boundary problems using the successive approximation 
(decoupled) approach. In many problems the convergence rate of free surfaces could be very 
slow when compared with other variables. The method of updating free surface shapes can also 
affect the convergence speed significantly." Stopping the iterations too early is very likely to 
introduce this type of error. Fortunately, the error could be minimized easily by setting strict 
convergence criteria. In this study an infinity norm of 1 x is used for both residual and 
correction vectors as the stopping criterion for Newton iterations. To examine the third type of 
error, mesh refinement is performed. Results obtained by three different meshes are compared and 
will be illustrated in Section 5. 

This study is mainly motivated by experimental observations (e.g. Figure 2) of a stationary, 
2 mm radius, NaNO, floating molten zone in vacuum.23 Therefore the numerical scheme 
developed here is aimed to study this specific system. The physical properties of NaNO, listed 
in Table I1 are used in this study unless otherwise stated. According to the table, sodium nitrate 
(NaNO,) is a high-Prandtl-number material (Pr = 9.12) and has a high surface tension tempera- 
ture coefficient ( d y / d T  = -0056 dyn cm- ' K- ') as well as a high thermal expansion coefficient 
( f l =  6.6 x K-' ). Therefore it is an excellent candidate for studying the interaction of 
thermocapillary flow and natural convection and the effects on interface shapes. In fact, NaNO, 
has been used to study floating molten zones or FZ crystal growth by many a ~ t h o r s ~ ~ - ~ ' - ~ ~  and 
its physical properties are well d~cumented. ,~ In the following section the effects of natural 
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Table 11. Physical properties of NaNO," 

T, = 306.8 "C 
AH = 182 J g- '  
h = 0 W cm-' "C-' 
k, = 5.65 x lo-' + 335(T - 230) x 
k, = 5.65 x 

ay/aT = -0.056 dyn cm-' "C-I 
y = 119.96 + (T - T,) aypT dyn cm-' 
p = 00302 - 1.533 x 10-4(T - T,) g cm-' s - '  
B = 6.6 x "C-' 

W cm-' "C-' 
+ 44.7(T - T,) x loT7 W cm-' "C-' 

C, = C,, = 1.255 + 2.18(T - 100) x lo-, J g-' "C-' 

= 0.7 
E~ = 0.7 
ps = 2.118 g 
pL = 1.W g cm-3 

convection on heat flow and interface shapes are discussed first, then the effects of thermo- 
capillary flow. Furthermore, a sample comparison of calculated results with the observed ones 
from Figure 2 is illustrated. Finally, the effect of heat input is demonstrated, followed by a brief 
conclusion in Section 6. 

5. RESULTS AND DISCUSSION 

5.1. Natural convection 

Owing to the high Prandtl number of NaNO,, the effect of convection on heat transfer 
could be very significant in the molten zone. Therefore the numerical results for NaNO, may 
be vulnerable to the grid systems used in the computation. Before the effect of buoyancy-induced 
flow (natural convection) is discussed, the effect of the discretization on the accuracy of the 
calculations is examined through a sequence of calculations for K - '  (a real 
value) and ay/aT = 0. Figure 7 shows three different meshes used for a 2 mm radius rod of 
NaNO, with a length of 10 cm in the two-dimensional region ( L  = 10 cm). The grids, given in 
the order of upper rod, melt and lower rod for each case, are 21 x 21, 21 x 31 and 21 x 21 in 
Figure 7(a), 31 x 21, 31 x 41 and 31 x 21 in Figure 7(b) and 41 x 21, 41 x 51 and 41 x 21 in 
Figure 7(c). The total numbers of unknowns are 2827, 5077 and 7927 respectively. The effective 
ambient temperature distribution is also shown on the LHS of Figure 7, in which T, = 540 O, 

T,, = 25 "C and a,  = uL = 0.3 cm. The calculated results based on the grids in Figures 7(a)-7(c) 
are shown in Figures 8(a)-8(c) respectively. In each figure the LHS shows the streamline and 
the RHS the isotherms. The arrows indicate the direction of flow. The streamlines are equally 
spaced at A$ = $madlo for the positive ones and at A$ = $,iJIO for the negative ones. The 
isotherms are also equally spaced at ATmcll = (T,,, - Tm)/10 in the melt and AT,,,,, = 8ATmCl1 
in the solid. These definitions of A$ and ATwill be used throughout this study. The calculated 
results based on the meshes shown in Figures 7(b) and 7(c) are significantly closer to each other; 
in fact, all of them are very close to one another. In order to have a reasonable balance between 
accuracy and CPU time, meshes similar to that in Figure 7(b) are used for all the calculations 
in this paper. Furthermore, as can be noted in Figure 7, the grid spacing is finer near the 
interfaces and free surfaces. This is to enhance the accuracy of the finite volume approximation 

= 6.6 x 
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2 1x7 1 41x91 

(a) (b) (C) 

Figure 7. Three dimerent grids used for a floating molten zone with natural convection: (a) 21 x 21 (lower rod), 21 x 31 
(melt zone), 21 x 21 (upper rod); (b) 31 x 21, 31 x 41, 31 x 21; (c) 41 x 21, 41 x 51, 41 x 21. The effective ambient 

temperature distribution is shown on the LHS 

Solid 

Y,,,,,,=-2.4970x1(J3 
I \  

1 
Streamlines Isotherms 

(a) 
StI 

Solid 
Rod 

.earnlines Isotherms 
@I 

Rod 

Streamlines Isotherms 

Figure 8. Calculated results based on the grids in (a) Figure 7(a), (b) Figure 7(b) and (c) Figure 7(c). The LHS shows 
the streamlines and the RHS the isotherms. A$ = $,.JlO for positive $, A$ = $,JlO for negative IL. ATm = 

(T,,, - Tm)/IO and A T  = 8AT, 
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p=O K' p=6.6x104K' 

y 
8 
d 
N 

Streamlines Isotherms Streamlines Isotherms Streamlines Isotherms 
(a) [b) (C)  

Figure 9. Effect of natural convection: (a) j = 0 K-', (b) j = 5 x K-'; (c) = 6.6 x K-' 

to the higher velocity and temperature gradients there. The stretch constants for the grid 
distribution are A = 0.4472, 6 = 2.4224, B,  = B ,  = 1.3 and 6, = 3.0. Similar mesh placements 
have been used in the simulation of FZ crystal growth."-'4 

The effects of natural convection are demonstrated through three different sets of /?. The 
calculated results are shown in Figure 9. The case of /I = 0 and d y / d T  = 0, i.e. conductive heat 
transfer only, is shown in Figure 9(a). As can be seen, the streamline is zero everywhere, which 
means no convection in the molten zone. Owing to gravity, the lower part of the molten zone 
bulges outwards. Since the density of solid ( p s  = 2.1173 g cm-3) is larger than that of the melt 
(p = 1.903 g ~ m - ~ ) ,  the total volume increases after melting. As such, unlike the previous 

where the melt and solid densities were assumed to be the same, the upper part of 
the molten zone does not neck inwards at this zone length. The melt/solid interfaces are slightly 
convex towards the melt. The maximum surface temperature is 343-23 "C, which represents a 
rather high superheating (3643 "C). 

When p is increased to 5 x lo- '  K-', natural convection is induced. As shown in Figure 9(b), 
there is one flow loop in the melt and it is clockwise in direction. The hotter and lighter melt 
near the free surface floats upwards, while the cooler and heavier melt near the centreline sinks, 
thus producing a flow loop. Owing to the action of the flow loop, heat transfer to the upper 
melt/solid interface is encouraged, while that to the lower melt/solid interface is discouraged. 
Consequently, the overall position of the melt zone and the location of the maximum temperature 
shift upwards as compared with those in Figure 9(a). However, the melt/solid interfaces are still 
very flat. When p is further increased to 6.6 x K-', these effects become more significant. 
Not only do the zone position and the T,,, location shift upwards more, but the isotherms also 
become highly distorted; the zone length is increased as well owing to the stronger convective 
heat transfer. At this p value T,,, = 325.60 "C, which represents a 17.65 "C decrease due to 
natural convection as compared with that of conduction alone (T,,, = 343.23 "C). 
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1 2 3 4 5 6 7  
Iteration number, n 

Figure 10. Convergence of Newton iteration scheme for various values of B 

The robustness of the simultaneous Newton iteration for the field variables and interface 
shapes is evident in Figure 10 by the convergence (measured by the infinity norm of 6) with 
the number of Newton iterations for computations with various /?. Initial guesses for each 
calculation are provided quite arbitrarily, either by a linear temperature distribution without 
convection (/? = 0) or by using the converged solution with a smaller value of /?. In each 
calculation the iterations converge nearly quadratically after two or three iterations. 

5.2. Thermocapillary flow 

Since the free surface of the molten zone is not isothermal, the surface tension gradient due 
to the temperature difference could induce fluid flow, the so-called thermocapillary convection. 
Different levels of thermocapillary convection can be introduced by setting different values of 
dy/dT and these are presented in Figure 11; Figure ll(a) is taken from Figure lqc)  for 
comparison. When lay/aTI is increased to 8.624 x lo-' dyn cm-' K-',  as shown in Figure 
ll(b), near the free surface a small flow loop in the lower part of the molten zone is induced 
and the flow direction is counterclockwise. Since ay/aT is negative, the surface flow is towards 
the melt/solid interfaces where the surface tension is the highest. As a result, the flow delivers 
heat to the melt/solid interfaces and thus results in a melting back at  the solid/melt interfaces 
near the free surface. The intensity of the upper flow loop is also enhanced, since the 
thermocapillary flow and natural convection are in the same direction, i.e. clockwise. Clearly, 
as compared with Figure ll(a), the intensity of the upper loop in Figure ll(b), = 
-2.7166 x lo-' g s-', becomes stronger and the flow loop penetrates more into the corner 
near the free surface; the asterisk indicates the zero streamline. Hence heat transfer is encouraged 
to the upper melt/solid interface but is discouraged near the centreline. As a result, the melt 
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dy/dT=O dyn/(cm K) dy/dT=-8.S24x1d3 dy/dT=-5.6~1 O2 

p 
8 
Yj 

y 
2 
5 

N 

I t- 

Streamlines Isotherms Streamlines Isotherms Streamlines Isotherms 
(a1 (b) kl 

Figure 1 1 .  Effect of thermocapillary flow: (a) d y / d T =  0 dyn K-' err-'; (b) d y / d T =  -8.624 x lo-' dyn K-' cm-'; 
(c) d y / d T  = -0056 dyn K-' cn-'. ,9 = 6.6 x lo-' K-' in all cases 

zone is significantly longer at the free surface and slightly shorter at the centreline and the free 
surface deformation increases as compared with Figure 1 l(a). When ldy/dTI is further increased 
to 0-056 dyn cm- ' K-', the lower convection loop increases and melts back the lower melt/solid 
interface even more. Surprisingly, the intensity of the upper loop decreases, while the position 
of the zone and T,,, shift downwards. The zone length decreases only slightly at the free surface 
but decreases significantly at the centreline. Meanwhile, the melt/solid interfaces become 
significantly more convex, which is consistent with those observed in experiments (Figure 
2). Obviously the thermocapillary flow is pervasive in the molten zone. In fact, these phenomena 
can only be observed through a floating molten zone model with the consideration of unknown 
melt/solid interfaces. Indeed, when an effective ambient temperature is given, the heat input can 
be affected not only by the zone shape but also by the zone position relative to the heater. 
Therefore the floating zone model proposed by Zhang and Alexander,' where the melt/solid 
interfaces are flat and fixed, is inadequate to describe a floating molten zone. 

Since the thermocapillary convection prevails over the buoyancy-driven one, the grid system 
used needs to be examined once more to ensure the validity of the results. The three different 
meshes shown in Figure 12, similar to the ones in Figure 7, are tested and the results based on 
these grids are illustrated in Figure 13. As can be seen, all the results are very close to one 
another. From Figures 13(atl3(c) they all converge within seven Newton iterations and each 
Newton iteration takes 15, 33 and 50 s CPU time respectively on an HP735 workstation. 

5.3. Comparison with experimental observation 

In this subsection the calculated results are compared with the experimental ones shown 
in Figure 2. If Figure 2 is examined closely, it is found out that the zone length of the lower 
part of the molten zone, with respect to the ring heater, is longer than that of the upper part. 
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21x71 
) 

> 
I 
8 
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3 1x8 1 

(b) 

4 1x9 1 

Figure 12. Three different grids used for a floating molten zone with natural convection and thermocapillary flow: (a) 
21 x 21(lowerrcd),21 x 3l(meltzone),21 x 21(upperrod);(b)31 x 21,31 x 41,31 x 21;(c)41 x 21,41 x 51,41 x 21. 

The effective ambient temperature distribution is shown on the LHS 

Streamlines Isotherms Streamlines Isotherms Streamlines Isotherms 
(a) @) (C) 

Figure 13. Calculated results based on the grids in (a) Figure 12(a), (b) Figure 12(b) and (c) Figure 12(c). The LHS shows 
the streamlines and the RHS the isotherms 
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Figure 14. Calculated results for the comparison with Figure 2: (a) effective ambient temperature; (b) mesh system; (c) 
calculated flow patterns, isotherms and interface shapes 

There are two factors that could be directly responsible for this: (1) free surface deformation 
and (2) thermocapillary flow. In the lower part of the zone the free surface bulges out and makes 
itself closer to the heater and thus receives more heat. On the other hand, the bulging free surface 
also provides more space for convection to develop. Thus the convective heat transfer is enhanced 
and tends to melt back the melt/solid interface more. As seen in Figure ll(c), the second effect 
is not dominant for the present zone length. Regarding the first factor, the symmetrical effective 
ambient temperature distribution that has been used so far seems not to be realistic. To improve 
this, the width parameters a, and aL of T,(z) are assigned to be different. In other words, the 
symmetrical effective ambient temperature distribution is modified to an asymmetrical one to 
simulate the effect of view factors. The asymmetrical T,(z) is shown in Figure lqa) .  As can be 
seen, the deviation of the distribution from the symmetrical one is very small. The mesh and 
the calculated results based on this T,(z) are shown in Figures 1qb)  and 1qc) respectively. As 
can be seen, owing to the asymmetrical heating profile, the molten zone shifts downwards and 
now has a zone length and position comparable with those in Figure 2. In fact, the parameters 
Tp, a, and aL are chosen purposely to provide a best fit to the experimental results. 

Because of the lens effect of the molten zone (the refractive index of NaNO, is about 1.46j6), 
both the visualized flow patterns and melt/solid interface shapes in Figure 2 have been optically 
distorted. In order to perform a further comparison, the calculated streamlines and interfaces 
are transformed to the optically distorted domain as shown on the RHS of Figure 15. A detailed 
description of this transformation is given el~ewhere.~' In Figure 15 the LHS of Figure 2 has 
also been included together with the calculated streamlines and interface shapes for comparison. 
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Figure 15. Comparison of the calculated results with Figure 2. The LHS shows the experimental photograph of flow 
patterns and interface shapes for a 2 mm radius NaNO, floating molten zonez3 and the RHS the optically transformed 

results from Figure 1qc) 

Streamhes Isotherms Streamlines Isotherms Streamlines Isotherms 

Figure 16. Effect of T,: (a) T, = 540 "C; (b) Tp = 590 "C; (c) T, = 640 "C 

(a) @I (d 

Interestingly, not only the flow loops and zero streamline but also the melt/solid interfaces and 
the free surface shape of the calculated results are in good agreement with the observed ones. 

5.4. Eflects of heat input 

As mentioned previously, an asymmetrical convection loop can affect the zone position. In 
order to show this effect, it is necessary to increase the zone length to produce a larger surface 
deformation; the zone length can in turn be adjusted by Tp.  Meanwhile, a symmetrical T, 
(au = aL = 0.3 cm) is adopted again for the calculation. The effect of T, is illustrated in Figure 16, 
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in which Tp ranges from 540 to 640°C. As shown in Figure lqa), at Tp = 540°C the 
intensities of the two loops are comparable. Although the lower part of the zone has a little 
more space for convection, the upper loop has two driving forces, since both thermo- 
capillary flow and natural convection are in the same direction. When T, is increased to 
590°C as shown in Figure 15(b), the lower part of the molten zone bulges significantly 
while the upper part necks inwards. The intensity of the lower convection loop is increased 
from 2.3227 x g s-', while the upper one is decreased to 1.8009 x 

g s-'. Clearly, owing to the significantly stronger convection and higher T,, the zone 
length beneath the heater increases significantly, while the upper one increases only slightly. 
A further increase in Tp makes this effect even more pronounced, as shown in Figure 16(c). 
At this point, owing to the extreme necking of the zone, the zone length (6.76mm) almost 
reaches its stability limit. When Tp is increased even further, no convergent result can 
be obtained; presumably the molten zone no longer holds. It has to be pointed out that 
the stronger convection is not the only factor that causes a longer zone length in the lower 
part of the zone. The heat flux to the molten zone is also affected by the zone shape; the 
bulging surface may receive more heat than the necked one owing to its larger surface 
area and shorter distance to the heater. In fact, it has been observed experimentallyz3 that 
at such a zone length the lower part of the zone could be more than two times longer than the 
upper one. 

to 9.2712 x 

6. CONCLUSIONS 

(1) A computer model based on the BFCFVM/Newton scheme is used to study the steady heat 
transfer, fluid flow and interfaces in a floating molten zone. Both natural convection and 
thermocapillary flow are considered and the free surface and melt/solid interfaces are calculated 
simultaneously. 
(2) During Newton iteration the Jacobian matrix is estimated efficiently by finite differences, 
while the linear Newton equations are solved by the ILU(0) preconditioned GMRES iterative 
matrix solver. This approach has proven to be effective and has achieved nearly quadratic 
convergence. 
(3) Natural convection encourages heat transfer towards the upper melt/solid interface and 
thus shifts the molten zone upwards. The melt/solid interface are very flat when natural 
convection is dominant in the melt zone. 
(4) For a 2 mm radius NaNO, floating molten zone, thermocapillary convection is dominant 
in the melt. As compared with the case of no convection, the melt zone is lengthened at the free 
surface but shortened at the centreline, resulting in very convex melt/solid interfaces. The 
calculated flow patterns and interface shapes are also compared with those observed in 
experiments and are found to be in good agreement. 
( 5 )  Owing to gravity, the lower part of the zone bulges outwards, while the upper one necks 
inwards. In the bulging part the thermocapillary convection is stronger and melts back the (lower) 
melt/solid interface more as compared with the necked (upper) one. The effect becomes 
even more pronounced when the zone length gets longer. This is also consistent with the 
experiments. 
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